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Abstract 
 

Protein plays an important role in human nutrition. Cereals, the major type of our food crops have provided 
the main source of energy and dietary protein. The proteins have an imbalanced distribution of essential amino 
acids which is due to the low content of these amino acids in their predominant seed protein fractions. Various 
strategies using conventional and molecular breeding towards improvement of nutritional value of food crops have 
been followed by scientists from time to time. The enormous information generated through characterization 
studies of their seed storage proteins and the development of new technologies for genetic engineering and plant 
transformations have formed the basis of improvement of grain quality in different cereals. This paper reviews 
information on various achievements by different scientists through initial attempts in this direction. 
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Introduction 
 

Protein was the first substance to be recognized 
as a vital constituent of living cells. Being next to 
water in terms of their abundance and availability, 
these are crucial in different biological roles as 
enzymes and hormones and in cell repair, defence 
mechanisms, transport of many substances, storage 
and blood clotting etc (Boulter and Derbyshire, 
1978). For carrying out these highly diverse 
functions, proteins occur in various configurations 
and sizes. Generally, carbohydrates and fats are used 
as a source of energy but under certain situations like 
excess dietary proteins or inadequate dietary fats and 
carbohydrates, proteins may also be utilized to supply 
energy. An adult human cannot synthesize amino 
acids such as isoleucine, leucine, lysine, methionine, 
phenylalanine, threonine, tryptophan and valine. 
Therefore, these need to be supplied through foods and 
have been termed as essential amino acids. Further, the 
term limiting has been used for a given essential 
amino acid because its absence or deficiency limits the 
ability of the body to make proteins despite the 

presence of all other amino acids. Animal protein 
sources like egg, milk, poultry, fish and meat are 
considered balanced in terms of correct ratio of 
essential amino acids and thus, are nutritionally better 
sources as compared to plant proteins 
(WHO/FAO/UNU report, 1985). As per this WHO 
technical report, eggs as a protein source have the 
highest quality rating of 100 as compared to protein 
rating of 70 for fish, 60 for cow milk, 50 for white rice, 
47 for soybean, 44 for whole grain wheat and 34 for 
potato. In view of their high cost, animal proteins 
cannot be easily afforded by the people of developing 
countries and thus, plants provide a cheaper source of 
dietary proteins for the poor populations. As  indicated 
by different surveys and reports, inadequate intake of 
nutrients including proteins over a continuously long 
period may lead to malnutrition among infants, pre-
school children, pregnant and lactating women of 
poor populations. 

 
Seed storage proteins of major cereals 

Since the period when human ancestors started 
earliest cultivation by gathering and saving seeds of
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crops of interest, cereals have evolved as the most 
important group of food crops through selection of 
desirable traits over the long period of domestication; 
these have provided an indispensable source of energy 
and dietary protein to a large part of the world 
population. Cereal seed proteins were among the first 
to be studied by Italian scientist Beccari (1745) who is 
known for isolation of gluten from the wheat flour. As 
mentioned earlier, the major reserve of proteins in 
cereals are represented by proclaims. However, in rice 
and oats, these are represented by glutelins and 
globulins respectively. A brief description of the 
composition, nutritional and functional characteristics 
of seed storage proteins in major cereals is given 
below. 
 
Maize 

Known as one of the extensively studied cereal 
proteins, zeins are subdivided into four types α, β, γ and 
δ fractions (Peterson et al., 1982). The α-zeins 
contribute about 75% of total zeins and are constituted 
by polypeptides of molecular weight 19 kDa and 22 
kDa. The β-zeins consist of polypeptides of molecular 
weight 14 and 16 kDa, and account for 10-15% of total 
zeins whereas γ-zein and δ-zein are represented by 
polypeptides of molecular weight 27 and 10 kDa 
respectively (Esen, 1986). The low content of lysine 
and tryptophan in all the zein fractions makes the maize 
proteins inferior in nutritional quality. The α-zeins, due 
to one or two cysteine residues per molecule are present 
either as monomers or oligomers, while the β, γ and δ 
zeins have higher levels of cysteine and/or methionine 
and   form   alcohol   insoluble   polymers that   can   be 
extracted only under reducing conditions. In this way, 
due to very low cysteine and methionine, α-zeins have 
lower nutritional value as compared to β, γ and δ zeins. 
 
 
Wheat 

The term gluten has been used for the water 
insoluble proteinaceous mass left after removal of bulk 
of starch and other components from the wheat dough. 
It mainly consists of glutelin and prolamin protein 
fractions which have been named as glutenins and 
gliadins respectively in wheat. Gliadins are monomeric, 
soluble in 70% ethanol and constitute about 50% of the 
seed protein; due to their extensive polymorphism, 
these have been widely used for identification of 
wheat cultivars. On the other hand, glutenins are 
polymeric and require the presence of a reducing agent 
for breaking disulphide bonds during extraction 
(Shewry et al., 1989). Gliadins h a v e  b e e n  
c l a s s i f i e d  i n t o  f o u r  g r o u p s  a s  α−, β−, γ− and 
ω-gliadins on the basis of their mobility. These have 
also been described on the basis of their amino acid 
composition as sulphur-rich prolamins (α, β and γ 

gliadins) and sulphur-poor prolamins (ωDgliadins). 
With their molecular weights in the range of 30 to 45 
kDa, α, β and γ   gliadins are poor in lysine, arginine 
and histidine, and hence are responsible for the poor 
nutritional quality of wheat; the ω-gliadins, in contrast, 
are resolved in the range of higher molecular weight 
of 44-80 kDa (Charbonnier, 1974). The glutenin 
polymers held together by disulphide linkages may 
occur as aggregates of very high molecular weight upto 
20,000 kDa, the largest in the plant kingdom. The 
HMW glutenin subunits have been further divided into 
x- and y-type on the basis of their slower and faster 
electrophoretic mobility respectively. The glutenin 
polymers, especially the HMW subunits, are largely 
responsible for dough strength and possess a highly 
elastic structure similar to that of elastin and titin 
(Shewry et al., 1989). It is due to this unique 
viscoelastic property that wheat dough can be made 
into different foods like bread, biscuits, noodles and 
pasta etc. It is mentioned that due their similarities 
such  as solubility in alcohol, higherproline and 
glutamine content and structural homology, glutenins 
and gliadins both have been considered as prolamins 
(Shewry et al., 1981). 
 
Rice 

Unlike the alcohol-soluble prolamins, dominating 
grains of most of the cereals, glutelins represent the 
major protein fraction in rice. Juliano (1972) reported 
these as constituting 80% of the total seed protein; 
however, using a different extraction protocol, 
Krishnan and White (1995) reported a lower 
proportion of 53% for glutelins. These are formed 
by polypeptide pairs of molecular weight 57 kDa, 
each consisting of a large acidic (37-39 kDa) and a 
small basic (22-23 kDa) subunit (Yamagata et al., 
1982). With respect to the molecular weights of 
subunit pairs and their subunits, rice glutelins show 
similarity with the legumin-like proteins of pea and 
soybean; these proteins have also been considered 
homologous due to similarity in their biosynthesis and 
amino acid sequences (Yamagata et al., 1982; Takaiwa 
et al., 1986). Based on the primary sequence 
comparisons, glutelins have been classified into A and 
B types (Takaiwa et al., 1991), the B-type glutelin 
having more of lysine is suggested as a good genetic 
resource to improve rice protein quality. In contrast to 
only one band of glutelin subunit pairs (Yamagata et 
al., 1982), as many as five glutelin subunit pairs over a 
range of mol. wt. 25-60 kDa have been observed by 
Singh (2006). The alcohol soluble prolamins which are 
present in PB-I type of protein bodies, account for 
approx.  35% of rice protein (Krishnan and White, 
1995) whereas Juliano (1972) reported prolamins as 
representing less than 5% of the grain protein. The 13 
kDa  prolamin  polypeptide  has  a  higher  content  of
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Table 1: Seed storage proteins and various genetic engineering approaches for improvement of grain quality in different 
cereals 

Protein manipulated Genetic engineering approach followed Improvement targeted Reference 
19 kDa and 22 kDa a-zein  of 
maize 

RNAi , antisense RNA technology Reduced level of zeins, 
increased Lys, Trp in maize 

Segal et al. (2003) 

19 kDa a-zein of maize Gene modified by Lys, Trp codons 
insertion 

Increased Lys and Trp in 
maize 

Wallace et al. (1988) 

y-zein of maize Gene modified by Lys codons insertion Increased Lys in maize Torrent et al. (1997) 
22 kDa kafirin of sorghum Transformation using heterologous 

protein gene 
Kafirin synthesis in maize Song et al. (2004) 

Sb401of Solanum berthaultii Transformation using heterologous 
protein gene 

Increased Lys and protein 
content in maize 

Yu et al. (2004) 

Amarantin of Amaranthus 
hypochondriacus 

Transformation using heterologous 
protein gene 

Improved protein and 
essential amino acids in maize 

Rascon-Cruz et al. 
(2004) 

1Dx5:1Dy10 HMW-GS 
subunits construct 

Transformation using homologous 
protein gene 

Better dough quality in wheat Blechl and Anderson 
(1996) 

1Ax1 HMW-GS of wheat Transformation using homologous 
protein gene 

Better dough quality in wheat Altpeter et al. (1996) 

1Ax1 HMW-GS of wheat Transformation using homologous 
protein gene 

Better dough quality in wheat Barro et al. (2003) 

1Dx5 and 1Dy10 HMW-GS of 
wheat 

Transformation using homologous 
protein gene 

Better dough quality in wheat  Blechl et al. (2007)  

Lys-rich Ama1 of Amaranthus 
hypochondriacus 

Transformation using homologous 
protein gene 

Increased Lys in wheat  Tamas et al. (2009)  

Legumin of pea Transformation using homologous 
protein gene 

Increased Lys in wheat  Stoger et al. (2001)  

Glycinin of soybean Transformation using homologous 
protein gene 

Increased  Lys  in rice  Katsube et al. (1999) 

3-phaseolin of french bean Transformation using homologous 
protein gene 

Increased  Lys  in rice  Zheng et al. (1995)  

Legumin of pea Transformation using homologous 
protein gene 

 Increased  Lys  in rice  Sindhu et al. (1997)  

Sunflower seed albumin Transformation using homologous 
protein gene 

Increased Met in rice Hagan et al. (2003) 

Glutelin A  of rice Antisense RNA technology Glutelin decreased, Met-rich 
prolamin increased in rice 

Maruta et al. (2001) 
 

1Dx5 HMW-GS of wheat Transformation using heterologous 
protein gene 

Rice flour with dough quality 
proteins 

Oszvald et al. (2007) 

Glycinin of soybean Gene modified by Met. codon insertion Glycinin accumulation in rice Katsube et al. (1999)  
Hordothionin of barley Transformation using heterologous 

protein gen 
Improved Lys  in sorghum Zhao et al. (2003) 

Chymotrypsin inhibitor 2 of 
barley 

Transformation using heterologous 
protein gene 

Increased Lys in sorghum  Forsyth et al. (2005)  

 
glutamic acid, aspartic acid and leucine and a low 
content of lysine and sulphur-containing amino acids. 
In contrast, 10 kDa and 16 kDa polypeptides have a 
higher content of sulphur-containing amino acids 
(Mitsukawa et al., 1999).  
  
Others 

The storage protein composition of oats is quite 
different from other cereals in having globulins as the 
most abundant proteins (70-80%) followed by 
albumins, prolamins and glutelins (Peterson and Smith, 
1976). The oat globulins further consist of three 
subfractions - α, γ and o globulins with sedimentation 
coefficient as 3S, 7S and 12S respectively. As described 
by Shotwell et al. (1988), the predominant 12S fraction 
is hexameric with subunit pairs of molecular weight 

53-58 kDa each further consisting of one large subunit 
(molecular weight 32-37 kDa) disulphide-bonded to a 
small subunit (molecular weight 22-24 kDa). Thus, 
this globulin fraction resembles that of the legumes in 
its structure and also in deficiency of sulphur- 
containing amino acids. The prolamins of oats are 
designated as avenins and have been divided into three 
subgroups as α, β and γ-avenins. Like other 
prolamins, avenins also have higher proportion of 
glutamine and proline residues and are deficient in 
lysine (Kim et al., 1978). In this way, on account of 
having a combination of relatively higher globulins and  
lower prolamins along with a high protein content of 
15 percent, oat seeds provide a better source of 
nutritional quality as compared to other cereals. In 
sorghum, prolamins called as kafirins represent 70- 
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80% of the total endosperm proteins (Hamaker et 
al., 1995). On the basis of their structural properties 
and solubility characteristics, kafirin polypeptides 
have been classified as α-kafirins 23, 25 kDa), β-
kafirins (16, 18 and 20 kDa) and γ-kafirins (28 kDa). 
The α-kafirins representing 80% of the total prolamins 
are located in the interior of protein bodies, and β- and 
γ-kafirins which have high cysteine content are stored 
at the periphery (Shull et al., 1992). The kafirins may 
occur in monomeric or polymeric forms and their 
composition is known to be responsible for poor 
digestibility. 
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